
Solve Initial Value ODE Using                                 
Explicit Euler Method
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Objectives

• Solve a First order ODE Using Explicit Euler Method

• Explicit Euler Method is a Finite Difference Method (FDM).

• To provide some introduction to FDM.

• We will introduce Taylor series expansion.
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• Many complex ordinary differential equations cannot be easily solved, 
analytically and we need to resort to numerical methods.

• FDM is a numerical method that converts the ordinary differential equations 
to algebraic equations.

• We can then solve the algebraic equations to obtain solutions.

• Finite difference methods like other numerical methods produce 
approximate solutions against exact solutions obtained using analytical 
methods.

• For solving many real world problems we don’t need exact solutions in 
general but accurate solutions are preferred.

Finite Difference Method (FDM)



• The objective of a finite difference method for solving an ordinary 
differential equation (ODE) is to transform a calculus problem into an algebra 
problem by:

• Discretizing the continuous physical domain into a discrete finite difference 
grid

• Approximating the exact derivatives in the initial-value ODE by algebraic 
finite difference approximations (FDAs)

• Substituting the FDAs into the ODE to obtain an algebraic finite difference 
equation (FDE)

• Solving the resulting algebraic FDE

Steps in Finite Difference Method (FDM)



• Before we use Finite Difference Method, we need to understand Taylor 
series expansion of continuous functions. 

• See below some very brief info on Taylor series which is an infinite series 
expansion of any function.

• f(x+Δx) = f(x) + f’(x) ∗ Δx + f”(x) ∗
Δx2

2!
+ …… (1)

• f(x−Δx) = f(x) − f’(x) ∗ Δx + f”(x) ∗
Δx2

2!
− …….. (2)

• Eq (1) is called forward Taylor series expansion and Eq (2) is called backward
Taylor series expansion.

• Note Δx is a fraction and has a small value. Δx2, Δx3.. etc are even smaller
and hence the terms associated with them can be ignored in general.

Taylor Series Expansion



• 𝑦𝑛+1 = 𝑦𝑛 + 𝑦′|𝑛 * Δt  +  
𝑦′′|𝑛
2!

* Δt2 + 
𝑦′′′|𝑛
3!

* Δt3 ………………(3)

• 𝑦′|𝑛 =
𝑦𝑛+1 − 𝑦𝑛

Δt
-

1

2
∗ 𝑦′′|𝑛 ∗ Δt -

1

6
∗ 𝑦′′′|𝑛 ∗ Δt2 - ………(4)

• If we truncate the remainder terms, we have,

• 𝑦′|𝑛 =
𝑦𝑛+1 − 𝑦𝑛

Δt
-

1

2
∗ 𝑦′′(τ) ∗ Δt ……….(5)     where t < τ < t + Δt

• 𝑦′|𝑛 =
𝑦𝑛+1 − 𝑦𝑛

Δt
O(Δt) ……….(6)

• Equation (6) is a first-order forward-difference approximation of y’ at grid 
point n.

Explicit Euler Method



• Consider a general nonlinear first order ODE of the form

• 𝑦′ = 𝑓 𝑡, 𝑦 , y(t0) = y0     ……….(7)

• 𝑦′|𝑛 =
𝑦𝑛+1 −𝑦𝑛

Δt
-

1

2
∗ 𝑦′′(τ𝑛) ∗ Δt ……….(5)

• Substitute Eq(5) into Eq(7)

•
𝑦𝑛+1 − 𝑦𝑛

Δt
-

1

2
∗ 𝑦′′(τ𝑛) ∗ Δt = 𝑓 𝑡𝑛, 𝑦𝑛 …..(8)

• Note n is the base point 

Explicit Euler Method

tn+1n



• Solving Eq 8 ,we get

• 𝑦𝑛+1 = 𝑦𝑛 + Δt ∗ 𝑓 𝑡𝑛, 𝑦𝑛 + 
1

2
∗ 𝑦′′(τ𝑛) ∗ Δt2 ; 

• Let  fn = 𝑓 𝑡𝑛, 𝑦𝑛

• 𝑦𝑛+1 = 𝑦𝑛 + Δt ∗ fn 𝑂 (Δt2) ……….(9)

• By repeated application after N steps

• 𝑦𝑛+1 = 𝑦𝑛 + Δt ∗ fn 𝑂 (Δt) ……….(10)

• Eq (10) is the (Finite Difference Equation) FDE of the Euler’s method

Explicit Euler Method

tn+1n



• The FDE is explicit, since fn does not depend on 𝑦𝑛+1

• The FDE requires only one known point. Hence, it is a single point method.

• The FDE requires only one derivative function evaluation [i.e.,f (t, y)] per step.

• The error in calculating 𝑦𝑛+1 for a single step, the local truncation error, is 
0(Δt2).

• The global (i.e., total) error accumulated after N steps is 0(Δt). 

• The explicit Euler method is conditionally stable.

• For a linear first-order homogeneous ODE of the form y’ + α * y = 0, 

the stability criteria is  Δt <= 
2

α

Explicit Euler Method



• Consistency – A FDE is consistent with an ODE if the difference between them (i.e., 
the truncation error) vanishes as ∆t → 0. In other words, the FDE approaches the 
ODE.

• Order - The order of a FDE is the rate at which the global error decreases as the grid 
size approaches zero.

• Stability - A FDE is stable if it produces a bounded solution for a stable ODE and is 
unstable if it produces an unbounded solution for a stable ODE. 

• Convergence - A finite difference method is convergent if the numerical solution of 
the FDE (i.e., the numerical values) approaches the exact solution of the ODE as ∆t 
→ 0.

• If a FDE demonstrates consistency and demonstrates conditional stability, we can say 
we can say that the method is convergent.

Definitions in Finite Difference Approximations



• Example ODE Problem

•
𝑑𝑦

𝑑𝑥
= - 2 * 𝑥3 + 12 * 𝑥2 - 20 * 𝑥 + 8.5

• From x = 0 to 4 with a step size of 0.5; 

• The initial condition at x = 0 is y = 1.

• The exact solution is given as 

• y =  - 0.5 * 𝑥4 + 4 * 𝑥3 - 10 *𝑥2 + 8.5 * 𝑥 + 1

Explicit Euler Method



• 𝑦𝑛+1 = 𝑦𝑛 + Δt ∗ fn (Note Independent variable can be x or t)

• fn = - 2 * 𝑥3 + 12 * 𝑥2 - 20 * 𝑥 + 8.5;        [ fn = f xn, yn ]

• Let n = 0; 

• 𝑦1 = 𝑦0 + Δt ∗ f0

• Δt = Δx = 0.5; 𝑦0 = 1;

• f0 = 𝑓 𝑥0, 𝑦0 = - 2 * 03 + 12 * 02 - 20 * 0 + 8.5 = 8.5

• 𝑦1 = 1 + 0.5 ∗ 8.5 = 5.25

• Likewise, y2, y3 etc can be evaluated

Explicit Euler Method



Summary

In this video, 

• We presented Explicit Euler Method to solve an Initial Value ODE

• The FDE is explicit, since fn does not depend on 𝑦𝑛+1

• The explicit Euler method is conditionally stable.

• The global error is 0(Δt).

• The error can be minimized by using smaller steps.

• In the next video we can look at Implicit Euler Method to solve Initial Value ODE
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